Content

1. Description
2. Materials
3. Partial factors
4. Profile main tube and bracing
5. Profile Truss
6. Calculation of permissible force in main tube
7. Calculation of permissible force in main tube
8. Design cutting forces
9. Displacement in frame work
10. Load chart for user loads

Apendix Tabelle

1. Description

The structure is a modular truss beam. Elements with different length can be mount to a straight beam.

The profile is a foldable trapezoid with 4 maintubes.
The truss is a welded structure of tubes. A drawing has to be attached to this calculation to complete it.

In the calculation the resistance and design cutting forces are determined and a table with permissible user loads is created.

The calculated values are based on the framework theory - so all loads are applied on the knotpoints.

This static calculation is applicable on all straight elements with a bracing of minimum 54° to the horizontal axis on the whole length of the element. For lower angles or missing bracing the calculation is not applicable.

The folling standards have been considered:
DIN EN 1999-1-1 and DIN EN 1999-1-1/A2
This standards are binding according european building authorities.
The necessary manufacturer qualificatin is:
DIN EN 1090 - with EXC 2, or EXC 3 for temporary structures
Note:
The standard uses "eff" for different values - the calculation separates 2eff,buck" for buckling and "eff" for HAZ reasons.

2. Materials

Aluminium
Welding process WIG
Correction factor 0,8
für nachfolgende Werte $f_{\text {haz }}, \rho$
Welding material 4043A

EN AW	main tube		bracing	
alloy	6082		6082	
temper	T6		T6	
temector				
	T6		T6	

Strength according Table 3.2b

$t-$ thickness	$t \leq 5$	$t \leq 5$	$5<t \leq 15$	mm
$\mathrm{f}_{\mathrm{o}}=$	250	250	260	$\mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{u}}=$	290	290	310	$\mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{o}, \text { haz }}=$	125	125	125	$\mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{u}, \text { haz }}=$	185	185	185	$\mathrm{~N} / \mathrm{mm}^{2}$

HAZ factor according table 3.2b-proper calculated
$\rho_{o, \text { haz }}=0,500$
0,500
0,481
$\rho_{\mathrm{u}, \mathrm{haz}}=\quad 0,638$
0,638
0,597

Values including factor of footnote 4) table 3.2b

$\mathrm{f}_{\mathrm{o} \text { haz }}=$	100	100	100	$\mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{u}, \text { haz }}=$	148	148	148	$\mathrm{~N} / \mathrm{mm}^{2}$
$\rho_{\mathrm{o}, \text { haz }}=$	0,400	0,400	0,385	$\mathrm{~N} / \mathrm{mm}^{2}$
$\rho_{\mathrm{u}, \text { haz }}=$	0,510	0,510	0,477	$\mathrm{~N} / \mathrm{mm}^{2}$

$$
E=\quad 70000 \mathrm{~N} / \mathrm{mm}^{2}
$$

3. Partial factors

Selfweight of truss	$\gamma_{\mathrm{f} 1}=1,35$
User Load	$\gamma_{\mathrm{f} 2}=1,5$
Resistance	$\gamma_{\mathrm{M} 0}=1,00$
	$\gamma_{\mathrm{M} 1}=1,10$
$\gamma_{\mathrm{M} 2}=1,25$	
$\gamma_{\mathrm{MP}}=1,25$	
	$\gamma_{\mathrm{Mw}}=1,25$

buckling

breaking caused by tension

4. Profile main tube and bracing

Main tube

No transverse welds - no brace connection
$\underline{\lambda}_{0}=\quad 0,1$
$\alpha=\quad 0,2$
$\underline{\lambda}=\left(A_{\text {eff,buck }}{ }^{*} \mathrm{f}_{0} / \mathrm{N}_{\mathrm{cr}}\right)^{0,5}=\quad 0,804$
$\phi=0,5^{*}\left(1+\alpha^{*}\left(\underline{\lambda}^{-} \underline{\lambda}_{0}\right)+\underline{\lambda}^{2}\right)=$ 0,894
$\chi=1 /\left(\phi+\left(\phi^{2}-\underline{\lambda}^{2}\right)^{0,5}\right)=\quad 0,779$
$\omega_{\mathrm{x}}=\quad 1$ only axial force

With transverse welds - brace connection in one plane

$\underline{\lambda}_{\text {haz }}=\left(A_{u, \text { eff }}{ }^{*} \mathrm{f}_{\mathrm{u}} / N_{\text {cr }}\right)^{0,5}=\left(\mathrm{A}_{\mathrm{g}}{ }^{*} \rho_{\mathrm{u}, \text { haz }}{ }^{*} \mathrm{f}_{\mathrm{u}} / N_{\mathrm{cr}}\right)^{0,5}=$	0,619
$\phi_{\text {haz }}=0,5^{*}\left(1+\alpha^{*}\left(\underline{\lambda}_{\text {haz }}-\underline{\lambda}_{0}\right)+\underline{\lambda}_{\text {haz }}{ }^{2}\right)=$	0,743
$\chi_{\text {haz }}=1 /\left(\phi_{\text {haz }}+\left(\phi_{\text {haz }}{ }^{2}-\underline{\lambda}_{\text {haz }}{ }^{2}\right)^{0,5}\right)=$	0,866
$\omega_{x, \text { haz }}=$	1

$\kappa=1 \quad$ - no longitudinal welds

Bracing vertical

No horizontal stabilization - not usable for horizontal use!

5. Profile Truss

Axis vertical

$$
e_{z}=\quad 471,10 \mathrm{~mm}
$$

Axis horizontal

$$
\begin{array}{rlr}
\mathrm{e}_{\mathrm{y}}= & 520,00 \mathrm{~mm} \\
& \\
\mathrm{~A}= & 2312 \mathrm{~mm}^{2} \\
\mathrm{I}_{\mathrm{y}}= & 128906529 \mathrm{~mm}^{4} \\
\mathrm{I}_{\mathrm{z}}= & 0 \mathrm{~mm}^{4} \\
\mathrm{~W}_{\mathrm{y}, \mathrm{el}}= & 494748 \mathrm{~mm}^{3} \\
\mathrm{~W}_{\mathrm{z}, \mathrm{e}}= & 0 \mathrm{~mm}^{3} \\
\mathrm{i}_{\mathrm{y}}= & 236 \mathrm{~mm}^{3} & 0 \mathrm{~mm}
\end{array}
$$

Scheme of the cross section to calculate the profile values.
Mesasurements can be taken from manufacturers drawing.

6. Calculation of permissible force in main tube

a. Tension in main tube (according 6.2.3)

General yielding along the member
$\mathrm{N}_{\mathrm{o}, \mathrm{Rd}}=\mathrm{A}_{\mathrm{g}}{ }^{*} \mathrm{f}_{0} / \gamma_{\mathrm{M} 1}=$ 131375,693 N

Local failure at a section with holes
$\mathrm{N}_{\mathrm{u}, \mathrm{Rd}}=0,9{ }^{*} \mathrm{~A}_{\text {net }}{ }^{*} \mathrm{f}_{\mathrm{u}} / \gamma_{\mathrm{M} 2}=$

- no holes in the tube

Local failure at a section with HAZ
$N_{u, R d}=A_{u, \text { eff }}{ }^{*} f_{u} / \gamma_{M 2}=A_{g}{ }^{*} \rho_{u, \text { haz }}{ }^{*} f_{u} / \gamma_{\mathrm{M} 2}=$
$68441,481 \mathrm{~N}$

b. Compression main tube (according 6.2.4 and 6.3.1.1)

Local failure at a section with transverse welds

$$
N_{u, R d}=A_{u, \text { eff }}{ }^{*} f_{u} / \gamma_{\mathrm{M} 2}=
$$

$$
68441,481 \mathrm{~N}
$$

$\mathrm{A}_{\text {u,eff }}$ is smaler value of:
$A_{g}{ }^{*} \rho_{u, \text { haz }}=$
295,006 mm ${ }^{2}$
aufgrund Schweißnaht
$A_{\text {eff,buck }}=\quad 578,053 \mathrm{~mm}^{2} \quad$ aufgrund örtlichen Beulens bei Q.- KI. 4

Permissible force in main tube due to buckling resistance

$$
\mathrm{N}_{\mathrm{b}, \mathrm{Rd}}=\kappa^{*} \chi^{*} \omega_{\mathrm{x}}{ }^{*} \mathrm{~A}_{\mathrm{eff}, \mathrm{buck}}{ }^{*} \mathrm{f}_{0} / \gamma_{\mathrm{M} 1}=
$$

102353,188 N

Brace connection in one plane
Arc length total $\quad \mathrm{L}_{\text {ges }}=\quad 157,080 \mathrm{~mm}$

Arc length brace attachment Extent of HAZ
Arc length HAZ
Reduced thickness
$\mathrm{N}_{\mathrm{b}, \mathrm{Rd}}=\chi_{\mathrm{haz}}{ }^{*} \omega_{\mathrm{x}, \mathrm{haz}}{ }^{*} \mathrm{~A}_{\mathrm{u}, \text { eff }}{ }^{*} \mathrm{f}_{\mathrm{u}} / \gamma_{\mathrm{M} 2}=$
${ }^{1)}$ If there is no transverse bracing on the buckling length $=$ no welding (6.49a)
${ }^{2}$) Bracing from one plane $=$ transversal weld (6.49b)

At this design:
$\min N_{b, R d}=$
102353,188 N

c. Connection main tube to fitting

$$
\mathrm{fw}=\quad 190 \mathrm{~N} / \mathrm{mm}^{2} \quad \text { Schw.-Zusatz 4043A }
$$

Circular welding

$$
\begin{array}{rlr}
\sigma_{\mathrm{r,Rd}}=\mathrm{fw} / \gamma_{\mathrm{Mw}}= & 152 \mathrm{~N} / \mathrm{mm}^{2} \\
\sigma_{\text {haz,Rd }}=\mathrm{f}_{\mathrm{u}, \text { haz }} / \gamma_{\mathrm{Mw}}= & 118,4 \mathrm{~N} / \mathrm{mm}^{2} \\
\mathrm{t}_{\mathrm{e}}= & \\
\mathrm{A}_{\mathrm{w}}= & 578,053 \mathrm{~mm}^{2}
\end{array}
$$

$$
t_{e}=\quad 4 \mathrm{~mm} \quad \text { Einbrandtiefe }
$$

Permissible force in main tube due to circular weld
$N_{w, R d}=A_{w}{ }^{*} \sigma_{r, R d}=$
87864,063 N
$\mathrm{N}_{\mathrm{w}, \mathrm{haz}, \mathrm{Rd}}=\mathrm{A}_{\mathrm{w}}{ }^{*} \sigma_{\text {haz }, \mathrm{Rd}}=$
$68441,481 \mathrm{~N}$
decisive
68441,481 N

Plug weld

$$
\begin{array}{rcc}
\tau_{!l, \text { Rd }}=\sigma_{r, \mathrm{Rd}} / 1,732= & 87,760 \mathrm{~N} / \mathrm{mm}^{2} \\
\tau_{\text {haz }, \mathrm{Rd}}=\mathrm{f}_{\mathrm{u}, \text { haz }} / 1,732 / \gamma_{\mathrm{Mw}}= & 68,360 \mathrm{~N} / \mathrm{mm}^{2} \\
& \\
\mathrm{~L}_{\mathrm{w}}= & 25 \mathrm{~mm} \\
\mathrm{a}_{\mathrm{w}}= & 2,828 \mathrm{~mm} \\
\text { Amount } & 4 \\
\mathrm{~A}_{\mathrm{w}}= & 282,8 \mathrm{~mm}^{2}
\end{array}
$$

Permissible force in main tube due to plug weld
$\mathrm{N}_{\mathrm{w}, \mathrm{Rd}}=\mathrm{A}_{\mathrm{w}}{ }^{*} \tau_{\underline{I!R d}}=$
24818,476 N
$\mathrm{N}_{\mathrm{w}, \text { haz }, \mathrm{Rd}}=\mathrm{A}_{\mathrm{w}}{ }^{*} \tau_{\text {haz, Rd }}=$
19332,286 N
decisive
19332,286 N

Permissible force in main tube in total due to welds
$\mathrm{N}_{\mathrm{w}, \text { haz }, \mathrm{Rd}}=$
87773,767 N

```
\(E \times A=\quad 70371675 \mathrm{~N}\)
\(L=\quad 60,000 \mathrm{~mm}\)
\(\Delta \mathrm{L}=\quad 0,01648 \mathrm{~mm}\)
Elongation is not relevant
```

Main tube 40463713 N
$60,000 \mathrm{~mm}$
$0,02867 \mathrm{~mm}$

d. Conical pin

$\mathrm{f}_{\mathrm{yp}}=$	$900,000 \mathrm{~N} / \mathrm{mm}^{2}$	$\mathrm{t} 1=$	$12,7 \mathrm{~mm}$
$\mathrm{f}_{\mathrm{up}}=$	$1000,000 \mathrm{~N} / \mathrm{mm}^{2}$	$\mathrm{t} 2=$	$32,2 \mathrm{~mm}$
$\mathrm{~d}=$	$14,500 \mathrm{~mm}$	$\mathrm{~s}=$	$1,2 \mathrm{~mm}$
$\mathrm{~A}=$	$165,130 \mathrm{~mm}^{2}$		
$\mathrm{~W}=$	$299,298 \mathrm{~mm}^{3}$		

Cylindric Pin

Conical pin

Spreading of the bearing width a_{p} (Contact pressure FEM)
$a_{p}=t_{1} \quad$ total width $\quad a_{p}<>0,5^{*} t_{1} \quad$ concentrated

Position of resultant force x_{h}
$x_{h}=1 / 3 * t_{1}$

$$
x_{h}=1 / 3 * 0,5 * t_{1}
$$

$$
\begin{array}{rll}
\mathrm{h}_{\mathrm{M}}=\mathrm{x}_{\mathrm{h}}^{*} 2+\mathrm{s}= & 5,433 \mathrm{~mm} & \text { relevant lever } \\
\mathrm{a}_{\mathrm{p}}= & 6,350 \mathrm{~mm} & \text { bearing width } \\
\text { maßgebend } & \text { right picture } & \text { for conical pin }
\end{array}
$$

Existing stress

Highest stress of other componentsn:
$\max \mathrm{N}_{\mathrm{Rd}}=$
68441,481 N
$F_{d}=\quad 68500,000 \mathrm{~N}$

Tension main tube
Local failure at a section with transv. welds

$\begin{array}{r} M_{d}=F_{d} / 2^{*} h_{M}= \\ F_{v, d}=F_{d} / 2= \end{array}$	186091,7 Nmm 34250,0 N	$\begin{aligned} & \max \\ & \max \end{aligned}$
$\begin{array}{r} M_{R d}=1,5 * W_{e l} * f_{y p} / \gamma_{\mathrm{M} 0}= \\ F_{\mathrm{v}, \mathrm{Rd}}=\alpha^{*} A * f_{\mathrm{up}} / \gamma_{\mathrm{M} 2}= \end{array}$	404052,4 Nmm 72657,2 N	not move able $\alpha=0,55$
$\max \quad \mathrm{M}_{\mathrm{d}} / M_{R d}=$	0,461<1	
$\max \quad \mathrm{F}_{\mathrm{v}, \mathrm{d}} / \mathrm{F}_{\mathrm{v}, \mathrm{Rd}}=$	0,471<1	

Interaction
$M_{d 1}$ at position of max $F_{v, d}-$ plane to inside fitting
$M_{d 1}=1 / 6^{*} a_{p}{ }^{*} F_{d}+F_{d} / 2{ }^{*} s=113595,83 \mathrm{Nmm}$
$\left(\mathrm{M}_{\mathrm{d} 1} / \mathrm{M}_{\mathrm{Rd}}\right)^{2}+\left(\mathrm{F}_{\mathrm{v}, \mathrm{d}} / \mathrm{F}_{\mathrm{v}, \mathrm{Rd}}\right)^{2}=\quad 0,301<1$
$\max \eta=\quad 0,471<1$
Permissible force in main tube due to pin
$\mathrm{N}_{\mathrm{Rd}} \gg 68500,000 \mathrm{~N}$
e. Fitting

$$
\begin{array}{lll}
\mathrm{fu}= & 310 \mathrm{~N} / \mathrm{mm}^{2} & \text { outer } \\
\mathrm{fu}= & 370 \mathrm{~N} / \mathrm{mm}^{2} & \text { inner }
\end{array}
$$

Outer fitting
Inner fitting 21,3 mm 0,490

Edge distance e1= $\alpha_{d}=e 1 /\left(3^{*} d_{0}\right)=$ $f_{\text {up }} / f_{u}=$
$\alpha_{b}=$

27 mm
0,621
3,226
0,621

30 mm
2,5
$16,1 \mathrm{~mm}$
1,408965517

$$
\begin{array}{rrr}
\mathrm{F}_{\mathrm{b}, \mathrm{Rd}}=2{ }^{*} \mathrm{k}_{1}{ }^{*} \alpha \mathrm{~b}^{*} \mathrm{f}_{\mathrm{u}}^{*} \mathrm{~d}^{*} \mathrm{t}_{1} / \gamma_{\mathrm{M} 2}= & 141732,0 \mathrm{~N} & \text { outer } \\
\mathrm{F}_{\mathrm{b}, \mathrm{Rd}}=\mathrm{k}_{1}{ }^{*} \alpha \mathrm{~b}^{*} \mathrm{f}_{\mathrm{u}}^{*} \mathrm{~d}^{*} \mathrm{t}_{2} / \gamma_{\mathrm{M} 2}= & 95346,8 \mathrm{~N} & \text { inner } \\
\sigma_{\mathrm{L}, \mathrm{RD}}=\mathrm{F}_{\mathrm{b}, \mathrm{Rd}} /\left(\mathrm{d}^{*} \mathrm{t}_{1}{ }^{*} 2\right)= & 384,83 \mathrm{~N} / \mathrm{mm}^{2} & \text { outer } \\
\sigma_{\mathrm{L}, \mathrm{RD}}=\mathrm{F}_{\mathrm{b}, \mathrm{Rd}} /\left(\mathrm{d}^{*} \mathrm{t}_{2}\right)= & 204,21 \mathrm{~N} / \mathrm{mm}^{2} & \text { inner }
\end{array}
$$

Permissible force in main tube due to bearing in fitting

$$
F_{b, R d}=
$$

f. Spigot

$\mathrm{d}_{\mathrm{k}}=$	$32,200 \mathrm{~mm}$	
$\mathrm{r}_{\mathrm{k}}=$	$16,1 \mathrm{~mm}$	
$\mathrm{~A}_{\mathrm{k}}=$	$8,143 \mathrm{~cm}^{2}$	without hole
$\mathrm{d}_{\mathrm{B}}=$	$14,500 \mathrm{~mm}$	
$\mathrm{~h}_{\text {Seg }}=$	$8,850 \mathrm{~mm}^{2}$	Thickness each segment
$\mathrm{A}_{\text {net }}=$	$363,730 \mathrm{~mm}^{2}$	
$\mathrm{f}_{\mathrm{u}}=$	$370 \mathrm{~N} / \mathrm{mm}^{2}$	

Permissible force in main tube due to spigot failure $\mathrm{N}_{\mathrm{u}, \mathrm{Rd}}=0,9{ }^{*} \mathrm{~A}_{\text {net }}{ }^{*} \mathrm{f}_{\mathrm{u}} / \gamma_{\mathrm{M} 2}=$ 107664,221 N
7. Calculation of permissible force in main tube
a. Buckling

Vertical

| $d=$ | $25,000 \mathrm{~mm}$ |
| ---: | :--- | ---: |
| $t=$ | $3,000 \mathrm{~mm}$ |
| $A=$ | $2,073 \mathrm{~cm}^{2}$ |

Permissible force in brace due to buckling
$N_{b, R d}=\kappa{ }^{*} \chi{ }^{*} \omega_{\mathrm{x}}{ }^{*} \mathrm{~A}_{\text {eff,buck }}{ }^{*} \mathrm{f}_{0} / \gamma_{\mathrm{M} 1}=$
19259,787 N

No horizontal stabilization - not usable for horizontal use!

b. Welding

Vertical

$$
\mathrm{fw}=\quad 190 \mathrm{~N} / \mathrm{mm}^{2} \quad \text { Welding mat. } 4043 \mathrm{~A}
$$

Circular weld

Permissible force in brace due to welding
$\mathrm{N}_{\mathrm{w}, \mathrm{Rd}}=\mathrm{A}_{\mathrm{w}}{ }^{*} \sigma_{\mathrm{r}, \mathrm{Rd}}=$
36088,072 N
$N_{w, \text { haz }, \mathrm{Rd}}=A_{\mathrm{w}}{ }^{*} \sigma_{\text {haz }, \mathrm{Rd}}=$
28110,708 N
decisive
28110,708 N

No horizontal stabilization - not usable for horizontal use!
c. HAZ

Vertical

General yielding along the member
$\mathrm{N}_{\mathrm{o}, \mathrm{Rd}}=\mathrm{A}_{\text {dia }}{ }^{*} \mathrm{f}_{0} / \gamma_{\mathrm{M} 1}=$
47123,890 N

Local failure at a section with HAZ
$\mathrm{N}_{\mathrm{u}, \mathrm{Rd}}=\mathrm{A}_{\text {dia }} * \rho_{\mathrm{u}, \text { haz }}{ }^{*} \mathrm{f}_{\mathrm{u}} / \gamma_{\mathrm{M} 2}=\quad 24549,662 \mathrm{~N}$
decisive $\quad 24549,662 \mathrm{~N}$

No horizontal stabilization - not usable for horizontal use!

8. Design cutting forces

Decisive main tube $\mathrm{N}_{\mathrm{Rd}}=\quad 68441,481 \mathrm{~N}$

Tension main tube aufgrund
Local failure at a section with transv. welds

Decisive brace vertical
$\mathrm{N}_{\mathrm{Rd}}=$
19259,787 N

Decisive brace horizontal
$\mathrm{N}_{\mathrm{Rd}}=$
0,000 N

Design values of resistance $M_{y, R d}$ of truss
(without interactition)

$$
M_{y, R d}=\quad 64,486 \mathrm{kNm}
$$

Design values of resistance $M_{z, R d}$ of truss

(without interactition)

$$
\mathrm{M}_{\mathrm{z}, \mathrm{Rd}}=\quad 0,000 \mathrm{kNm}
$$

Design values of resistance $\mathrm{V}_{\mathrm{z}, \mathrm{Rd}}$ of truss

(without interactition)
$\mathrm{V}_{\mathrm{z}, \mathrm{Rd}}=\quad 28,148 \mathrm{kN}$
Design values of resistance $\mathrm{V}_{\mathrm{y}, \mathrm{Rd}}$ of truss
(without interactition)

$$
V_{y, R d}=\quad 0,000 \mathrm{kN}
$$

9. Displacement in frame work

Without endbrace: $I_{x 0}=I_{x}$
Displacement bracing

$$
\begin{array}{ll}
\mathrm{e}_{\mathrm{x} 1}= & 20,70 \mathrm{~mm} \\
\mathrm{I}_{\mathrm{x} 1}= & 689,9 \mathrm{~mm} \\
\mathrm{I}_{\mathrm{x} 0}= & 365,6 \mathrm{~mm}
\end{array}
$$

Local bending in main tube
$V_{z, \text { Ebene }}=\quad V_{z} \times 0,5521392$ for folding truss
$\mathrm{M}_{\text {lokal }}=\mathrm{V}_{\mathrm{z}, \text { Ebene }}{ }^{*} \mathrm{e}_{\mathrm{x} 1} /\left(\mathrm{e}_{\mathrm{x} 1}+\mathrm{I}_{\mathrm{x} 0}+\mathrm{I}_{\mathrm{x} 1}\right)^{*} \mathrm{I}_{\mathrm{x} 1}=\quad 0,733 \times \mathrm{V}_{\mathrm{z}}(\mathrm{cm} * k N)$
$\sigma_{(\text {Mokal })}=M_{\text {lokal }} / \mathrm{W}$
Globale Spannung im Gurt aus N
$\sigma_{(\text {Nglobal })}=N / A$

Gesamt
$\sigma \mathrm{d}_{(\text {gesamt })}=\sigma_{(\text {Mlokal })}+\sigma_{(\text {Nglobal })}<\sigma_{\text {Rd }}$

Displacement at connection	$e_{\mathrm{x} 2}=$	$100,00 \mathrm{~mm}$
	$e_{\mathrm{x} 3}=$	55 mm

Local bending in main tube
The truss is designed with end braces - load distribution on upper and lower chords $\mathrm{V}_{\mathrm{z}, \text { Gurt }}=\quad \mathrm{V}_{\mathrm{z}, \text { Ebene }} \times 0,5$
$\max \mathrm{M}_{\text {Iokal }}=\mathrm{V}_{\mathrm{z}, \mathrm{Gurt}}{ }^{*} \mathrm{e}_{\mathrm{x} 2}=\quad 2,761 \times \mathrm{V}_{\mathrm{z}}\left(\mathrm{cm}^{*} \mathrm{kN}\right)$
Influence of plugged connector
$\mathrm{M}_{\text {lokal(x) }}=\max \mathrm{M}_{\text {lokal }}{ }^{*}\left(\mathrm{I}_{\mathrm{x} 1}-\mathrm{e}_{\mathrm{x} 3}\right) / \mathrm{I}_{\mathrm{x} 1}=\quad 2,541 \mathrm{xVz}(\mathrm{cm} * k N)$
$\sigma_{(\text {Miokal }(x))}=\mathrm{M}_{\text {lokal(x) }} / \mathrm{W}$
Displacement connection is decisive!

Reduced crossection at end brace
 \section*{from CAD}

$\mathrm{A}_{\mathrm{u}, \text { eff }}=$
$I_{u, \text { eff }}=$
$\mathrm{W}_{\mathrm{u}, \text { eff }}=$
$\mathrm{N}_{\mathrm{u}, \mathrm{Rd}}=\mathrm{A}_{\mathrm{u} \text {,eff }}{ }^{*} \mathrm{f}_{\mathrm{u}} / \gamma_{\mathrm{M} 2}=$
$M_{u, \text { Rd }}=W_{u, \text { eff }}{ }^{*} f_{u} / \gamma_{\mathrm{M} 2}=$
$351,80 \mathrm{~mm}^{2}$
91279,40 mm^{4}
$3319,25 \mathrm{~mm}^{3}$

81617,6 N
770066,21 Nmm

Proof
((NEd / Nu,Rd)^1,3 + (MEd / Mu,Rd) $\left.)^{\wedge} 1,7\right)^{\wedge} 0,6<=1$
Due to the interaction the load chart is determined. The loads are determined manualy to reach not more than 100% utalization.

Reduced cross section at circular welding
with 100% HAS - only for information, because this area is reinforced by the plugged connector.

$\mathrm{t}_{\text {eff }}=\mathrm{t}_{\mathrm{g}}{ }^{*} \rho_{\mathrm{u}, \text { haz }}=$	$2,0413793 \mathrm{~mm}$	
$\Delta t=t_{g}-t_{\text {eff }}=$	$1,9586207 \mathrm{~mm}$	
$\mathrm{d}_{\mathrm{a}, \text { eff }}=$	$48,041379 \mathrm{~mm}$	
$\mathrm{d}_{\mathrm{i}, \mathrm{eff}}=$	$43,958621 \mathrm{~mm}$	
$\mathrm{A}_{\mathrm{u}, \text { eff }}=$	295,00638 mm	$=\mathrm{A}_{\mathrm{g}}{ }^{*} \rho_{\mathrm{u}, \text { haz }}$
$\mathrm{I}_{\mathrm{u}, \text { eff }}=$	$78182,858 \mathrm{~mm}^{4}$	
$\mathrm{W}_{\mathrm{u}, \text { eff }}=$	$3254,8132 \mathrm{~mm}^{3}$	
$\mathrm{N}_{\mathrm{u}, \mathrm{Rd}}=\mathrm{A}_{\mathrm{u} \text {,eff }}{ }^{*} \mathrm{f}_{\mathrm{u}} / \gamma_{\mathrm{M} 2}=$	68441,481 N	
$\mathrm{M}_{\mathrm{u}, \mathrm{Rd}}=\mathrm{W}_{\mathrm{u}, \text { eff }}{ }^{*} \mathrm{f}_{\mathrm{u}} / \gamma_{\mathrm{M} 2}=$	755116,67 Nmm	

10. Load chart for user loads

The user loads cause a 100% maximum to the design resistance values. The interaction of local bending is considered.

The chart is useable for a simple beam with joint supports.
The loads are applied on the knot points.
Local bending caused by displaced loads is not considered.
Deflections are calculated with endless shear stifness between upper and lower chords. In reality smaler variance is possible (Bernoulli / Timoschenkow).

Considered selfweight:

$$
\mathrm{g}=\quad 0,135 \mathrm{kN} / \mathrm{m}
$$

